
On the Effectiveness of OpenMP teams for
Programming Embedded Manycore Accelerators

Alessandro Capotondi
Università di Bologna

alessandro.capotondi@unibo.it

Andrea Marongiu
Swiss Federal Institute of Technology (ETH Zurich)

a.marongiu@iis.ee.ethz.ch

Abstract
With the introduction of more powerful and massively parallel em-
bedded processors, embedded systems are becoming HPC capable.
In particular heterogeneous on-chip systems (SoC) that couple a
general-purpose host processor to a many-core acceleratorare be-
coming more and more widespread, and provide tremendous peak
performance/watt, well suited to execute HPC-class programs. The
increased computation potential is however traded off for ease pro-
gramming. Application developers are indeed required to manu-
ally deal with outlining code parts suitable for acceleration, par-
allelize there efficiently over many available cores, and orchestrate
data transfers to/from the accelerator. In addition, sincemost many-
cores are organized as a collection ofclusters, featuring fast local
communication but slow remote communication (i.e., to another
cluster’s local memory), the programmer should also take care of
properly mapping the parallel computation so as to avoid poor data
locality. OpenMP v4.0 introduces new constructs for computation
offloading, as well as directives to deploy parallel computation in a
cluster-aware manner. In this paper we assess the effectiveness of
OpenMP v4.0 at exploiting the massive parallelism available in em-
bedded heterogeneous SoCs, comparing to standard parallelloops
over several computation-intensive applications from thelinear al-
gebra and image processing domains.

Categories and Subject Descriptors C.1.4 [Computer Systems
Organization]: Processor Architectures—Parallel Architectures;
D.1.3 [Software]: Programming Techniques—Concurrent Pro-
gramming; D.3.3 [Software]: Programming Languages—Language
Constructs and Features

General Terms Performance assessment

Keywords Heterogeneous systems, manycores, HPC, NUMA,
nested parallelism, OpenMP

1. Introduction
Architectural heterogeneity has proven an effective design paradigm
to cope with an ever-increasing demand for computational power
within tight energy budgets, virtually in every computing domain.
Programmable many-core accelerators are nowadays widely used

[Copyright notice will appear here once ’preprint’ option is removed.]

in high-performance computing systems [15] as well as in embed-
ded devices, where they operate as co-processors under the control
of a general-purpose CPU (usually called thehost). Many-core
accelerators are composed of several tens of simple processing
elements (PEs), where highly-parallel computation kernels of an
application can be offloaded to improve overall performance/watt.
From the hardware design viewpoint, the most common approach
is that of organizing the computation resources inclusters, each
featuring a small-medium number of PEs tightly coupled to local
L1 memory (typically designed as a scratchpad). This architectural
template is no longer solely used in general-purpose graphical pro-
cessing units (GPGPUs), but it is widespread also in embedded
manycores [11] [5] [1] [4].

The tremendous GOps/Watt that such architectures can achieve
are traded-off for an increased programming complexity: extensive
and time-consuming rewrite of applications is required, using spe-
cialized programming paradigms. OpenCL [6], one of the most
representative examples of such category of programming mod-
els, aims at providing a standardized way of programming such
accelerators, however it offers a very low-level programming style.
Higher-level programming styles are offered by directive-based ap-
proaches such as OpenACC [12] or OpenMP [13], which has in-
cluded in the latest specification extensions to manage accelerators.

The main advantage of OpenMP-like approaches is that of en-
abling users to express software optimizations in a highly flexible
and abstract manner, focusing on algorithmic details rather than
architecture-specific aspects. Offloaded regions of codes are re-
ferred as target regions and may include sequences of sequential,
parallel regions, and possibly nested parallel regions. Nested par-
allelism is particularly important to effectively use manycores or-
ganized as a fabric ofclusters. Indeed, while communication to
local L1 memory leverages fast and high-bandwidth channelssuch
as crossbars, inter-cluster communication is subject to non-uniform
memory access (NUMA) effects, as it relies on multi-hop transac-
tions over a network-on-chip, which offers lower bandwidthand
higher latency.

OpenMP 4.0 offers constructs to specify the distribution of
work among clusters in a cluster-aware manner. Specifically, the
teams construct allows the creation of a team of worker threads
each belonging to a different cluster. Each team master can then
create nested parallel teams, whose threads are recruited from local
resources. In a scratchpad-based architecture, the masterthread
is typically responsible for bringing data in and out via DMA
transfers, thus it is extremely important that the thread-to-core
mapping follows a cluster-aware policy such as the one enabled by
theteam construct. Distributing work among threads in a locality
aware manner can be done at the loop-level using thedistribute

clause.
In this paper we explore the benefits of using cluster-aware

workload distribution in an embedded many-core accelerators, con-

1 2015/9/1

CPU

MMU

L2 $

CPU

MMU

L2 $

Coherent interconnect

L1 $ L1 $
…

Interconnect

cluster

L2 mem

L1 mem

… cluster

L1 mem

NI

Main memory

host many-core

Figure 1. Heterogeneous embedded SoC template

sidering several benchmarks from the linear algebra and image pro-
cessing domain, and parallelizing them with OpenMP 4.0. We high-
light the benefits of such recent additions to the specifications, com-
paring the results to a flat parallelization scheme, i.e., one which
uses all the processors available from a single logical thread team.
In this case only a single master thread for the whole platform is
available to orchestrate data transfers, which generates computa-
tion with poor locality. We also compare the distributed approach
to the use of standard OpenMP nested parallel regions and show
that in absence of cluster awareness these perform even poorlier.

The rest of the paper is organized as follows. Section 2 describes
the target heterogeneous SoC and cluster-based manycore. Section
3 discusses the key background notions for OpenMP v4.0. Section
4 introduces the considered benchmarks and discuss acceleration
and parallelization schemes. Section 5 presents the evaluation of
the described schemes. Section 6 describes related work andSec-
tion 7 concludes the paper.

2. Architectural Template
In this work we consider as a many-core based heterogeneous sys-
tem the ST Microelectronics STHORM platform [11], but the re-
sults discussed later can be applied to a broader class of devices
which share with STHORM a common architectural template. Fig-
ure 1 shows the block diagram of the target heterogeneous embed-
ded system template. A powerful general-purpose processor(the
host) is coupled to a programmable manycore accelerator com-
posed of several tens of simple processors, where critical computa-
tion kernels of an application can be offloaded to improve overall
performance/watt [1, 4, 5, 11].

Similar to GPGPUs, the many-core accelerator leverages a
multi-cluster design to overcome scalability limitations[5, 11].
Processors within a cluster are tightly-coupled to local L1scratch-
pad memory, which implies low-latency and high-bandwidth com-
munication. Globally, the many-core accelerator leverages a par-
titioned global address space (PGAS). Every remote memory can
be directly accessed by each processor, but inter-cluster commu-
nication travels through a NoC, and is subject to non-uniform
memory access (NUMA) latency and bandwidth. Unlike the typi-
cal GPU data-parallel cores, that rely on a common fetch/decode
phase, the processors considered here are simple independent RISC
cores, perfectly suited to execute both single-instruction, multiple-
data (SIMD) and multiple-instruction, multiple-data (MIMD) types
of parallelism. This allows to efficiently support a programming
model such as OpenMP, that leverages not only data-level par-
allelism, but also sophisticated forms of dynamic and irregular
parallelism (e.g., tasking).

…

Data Interconnect
(MoT)

Bank 31
TCDM (32 banks)

.

Bank 0 …

Crossbar

CORE 15

I$

CORE 0

I$

NI

DEMUX DEMUX

test and set

Peripheral

Interconnect

DMA

(MoT)

Figure 2. On-chip shared memory cluster

The simplified block diagram of the targetcluster is shown
in Figure 2. It contains sixteen RISC32 processor cores, each
featuring a private instruction cache. Processors communicate
through a multi-banked, multi-ported Tightly-Coupled Data Mem-
ory (TCDM). This shared L1 TCDM is implemented as explicitly
managed SRAM banks (i.e., scratchpad memory), to which pro-
cessors are interconnected through a low-latency, high-bandwidth
data interconnect which allows 2-cycle L1 accesses (one forre-
quest, one for response). This is compatible with pipeline depth for
load/store for most processors, hence it can be executed in TCDM
without stalls – in absence of conflicts. The interconnection sup-
ports up to 16 concurrent processor-to-memory transactions within
a single clock cycle, given that the target addresses belongto dif-
ferent banks (one port per bank). Multiple concurrent readsat the
same address happen in the same clock cycle (broadcast). A real
conflict takes place only when multiple processors try to access dif-
ferent addresses within the same bank. In this case the requests are
sequentialized on the single bank port. To minimize the probability
of conflicts i) the interconnection implements address interleaving
at the word-level; ii) the number of banks is M times the number of
cores (M=2 by default).

Processors can synchronize by means of standard read/write
operations to an area of the TCDM which providestest-and-set
semantics (a single atomic operation returns the content ofthe
target memory location and updates it).

Since the L1 TCDM is typically very small (256KB for STHORM)
it is impossible to permanently host all data therein or to host large
data chunks. The software must thus explicitly orchestratedata
transfers from main memory to L1, to ensure that the most fre-
quently referenced data at any time are kept close to the proces-
sors. To allow for performance- and energy- efficient transfers, the
cluster is equipped with a DMA engine.

The OpenMP v4.0 implementation that we consider for our ex-
ploration is based on our previous work [10] and has been extended
to include all the features for kernel offloading.

3. Background
OpenMP v4.0 [13] introducesoffloadingdirectives to program ac-
celerators. Similar to any previous OpenMP construct, these di-
rectives apply to the code block that they enclose. The key con-
struct is thetarget directive, which highlights the structured code
block that should be compiled and loaded for execution onto ade-
vice. Themap clause can be additionally used to specify which data
items have to be transferred to and from the device. In addition, the
target data directive allows to allocate and transfer data before
the actual offload takes place (i.e., a sort of data pre-fetching). The
device clauses allows to specify the exact device to use if more
than one is present in the system.

2 2015/9/1

STRAS Matrix multiplication using Strassen decomposition
GSID Generalized squared interpoint distance
LRFR Local reference frame radius (surface matching)
HIST Histogram interpolation
NCC Normalized cross-correlation algorithm
CT Object tracking based on a specific color
FAST Corner detector [16]

Table 1. Benchmarks

Within a target region most standard OpenMP constructs for
parallelism can be used. Thus, upon offload a single thread iscre-
ated that starts execution of the target region, until aparallel con-
struct is encountered. Since many accelerators are organized into
clusters, and since inter-cluster communication is typically costlier
than internal transactions, OpenMP v.4.0 also introduces directives
to abstractly expose architecture organization at the program level.
Theteams directive groups the threads of a device into sets (teams)
that are later mapped onto physical clusters, thus achieving uni-
form and high-locality inter-thread communication. The program-
mer can control the number of teams (num teams clause) and the
maximum number of threads in each team (thread limit clause)
along with the teams directive, respectively. One of the threads in
each team is designated teammasterand the structured block fol-
lowing the directive is executed by all team masters across the dif-
ferent teams. Upon team start only team masters execute, sequen-
tially, one per cluster. When aparallel directive is encountered,
all the threads in each team start execution, to collaboratein the
execution of the enclosed structured block.

As most of the parallel work in offloaded kernels is typically
found within loops, thedistribute directive is provided to dis-
tribute loop iterations across teams, and then across threads therein.
Note that the same thing could not be simply achieved by nest-
ing twoparallel for constructs, as this would require manually
rewriting the loop as a nested loop (with outer and inner loops).

These new constructs allows to achieve a cluster-aware mapping
of threads but also loops, without requiring that the programmer
explicitly handles these aspects. In the next section we illustrate
how these constructs can be used to efficiently offload computation
to a many-core accelerator.

4. Benchmarks and Acceleration Schemes
In this section we briefly describe the six benchmarks used for our
exploration, and the acceleration schemes enabled by the OpenMP
v4.0 offload directives. The benchmarks were selected from the
linear algebra, image processing and computer vision domains, and
are representative of the computational kernels typicallyoffloaded
to many-core accelerators. A brief description can be foundin Table
3.

FAST is particularly sensitive to input data, in terms of the
available degree of parallelism. The two parameters that impact the
performance the most are input image size and corner density. The
former influences the overall number of iteration. Being thecore
computation kernel of FAST particularly fine-grained, a very small
number of iterations per threads results in visible parallelization
overheads. The latter influences the actual parallel work, which is
protected by an if statement that quickly filters out image block that
clearly don’t contain a corner. For this reason, we considerhere six
variants of the benchmark execution, with as many differentinput
images:

• 1.5% S1.5% corner density in a small image (QVGA)

• 6% S6% corner density in a small image

• 15% S15% corner density in a small image

• 1.5% L 1.5% corner density in a large image (VGA)

• 6% L 6% corner density in a large image

• 15% L 15% corner density in a large image

Since in STHORM the host and the accelerator physically share
the main L3 memory, the offload infrastructure by default simply
passes pointers to data structures therein, rather than copying them
to the accelerator space. However, for improved performance and
energy efficiency, data has to be moved in the TCDM. In absenceof
a data cache this has to be explicitly done in the program via DMA
transfers.

Each of the considered benchmarks operates on input and output
data sets that are too large to fit in the TCDM. Thus, such data
structures are divided instripes, which are transferred in and out of
the TCDM following a traditional double buffering scheme.

DMA transfers of data stripes are typically taken care of by a
single thread (themaster), from within an outer loop. Additional
threads are involved in parallel computation when the transfer is
complete. To parallelize the target benchmarks we have usedthree
different approaches.

The simplest approach to use all available cores is that of cre-
ating a large parallel region which recruits them all. We call this
approachflat parallelism, as it does not take into account the hierar-
chical structure of the cluster organization (interconnect, memory).
Figure 3 shows how this parallelization scheme deploys threads
onto available cores. Thetarget directive starts execution of the
enclosed region onto a single core, which orchestrates DMA trans-
fers then jumps into the KER function. Here the main loop is found,
and it is parallelized with aparallel for construct. By default,
if no number of threads is specified all the available threadsare in-
volved. Note that since the master thread manages the DMA trans-
fers with no awareness of the clusters, the data used by all threads in
the parallel region is held in a single buffer (BUF0) that physically
reside in the TCDM of the cluster that hosts the master thread. As
a consequence, the threads that live in the same cluster as the mas-
ter will enjoy fast data access, whereas threads belonging to other
clusters will experience longer access times, leading to unbalanced
computation.

Figure 4 shows the second parallelization approach, which adds
awareness of the clustered nature of the platform to the code. Here
the teams directive is used to create an outer parallel team that
recruits threads from different clusters. These threads will become
local masters of these clusters, and will orchestrate DMA transfers
to/from the local TCDM. Thedistribute directive is used to
partition the outermost loop among local masters, and this will
make each master have its own data buffer in the local L1 memory.
When a newparallel construct is encountered, an inner thread
team is created, that shares high locality computation withthe local
master.

A third parallelization approach is considered for the sakeof
comparison: standard nested parallel regions. In principle is possi-
ble to specify the creation of an outer parallel region with as many
threads as clusters, which will act as local master to those regions.
Additional parallelism can then becreated when required bynest-

3 2015/9/1

Figure 3. Flat parallelization of the Color Tracking application.

Figure 4. Distribute parallelization for color tracking.

ing aparallel construct within the first. Note that however this
scheme lacks a notion of the cluster organization, and threads for
the outer and inner regions will be recruited in an unspecified or-
der. In the STHORM implementation this order is sequential,con-
sidering the list of all the processors available. Thus, creating an
outermost region of four threads recruits the local mastersfrom the
same cluster. As a consequence, the code for DMA management
will create four data buffers that reside in the same TCDM. Inner-
most teams will be composed of threads that physically belong to
more than one cluster, which will create significantly higher cost
for their runtime management (in addition to poor data locality).
Figure 5 shows how this approach deploys threads and computa-
tion to the platform.

5. Experiments
In this section we describe the results collected by runningthe
various benchmarks on STHORM when the three deployment ap-
proaches are considered. As a main metric of performance we con-
sider speedup of the parallel application versus the sequential.

Results for this experiment are shown in Figure 6.

5.1 Effectiveness of theteams distribute construct

The most notable finding is that the cluster-aware workload deploy-
ment enabled by thedistribute directive allows to achieve very
high speedups and thus to make an effective use of many cores.
Four out of seven benchmarks achieve nearly ideal speedup (above
60×), considering the best result for FAST speedup. As already
explained, FAST leverages very fine-grained parallelization, for
which the overhead introduced by runtime support for nestedparal-

4 2015/9/1

Figure 5. Nested parallel constructs on the Color Tracking application.

1.5%_S 6%_S 15%_S 1.5%_L 6%_L 15%_L

STRAS GSID LRFR HIST NCC CT FAST

flat parallel for 15,20 14,96 15,03 8,02 12,02 0,77 6,89 7,30 7,83 10,10 9,67 15,63

nested parallel for 1,02 1,01 1,02 0,89 0,96 0,83 0,92 0,88 0,99 1,01 0,98 1,04

teams distribute 47,26 60,83 59,27 41,61 61,48 19,56 22,67 30,99 28,92 45,76 49,26 60,20

0

8

16

24

32

40

48

56

64

SPEEDUP

Figure 6. Comparison of various approaches to nested parallelism support.

lelism has a higher impact. Thus, when the image size is very small
(QVGA) the speedups are limited (up to60×) The corner density
is also confirmed to have a big impact on performance, as shown
by the variance among the three configurations (1.5%, 6%, 15%).
Note that already for moderately large images (VGA) the speedups
get as high as close to ideal.

The only application that achieves poor speedup in this configu-
ration is CT, thus it is worth a bit more of investigation. Color-based
tracking consists of a cascade of four functional kernels. Color
space conversion (CSC), threshold-based color filter (cvTHR), mo-
tion vector calculation (cvMOM) and motion vector to reference
frame addition (cvADD). Each of these kernels contains little com-
putation, thus to improve the computation to communicationratio
(CCR) we merge the CSC, cvThresh and cvMOM kernels into a
single kernel (i.e., a single data stripe transfer is required to exe-

cute all the kernels in sequence). The last kernel, cvADD cannot
be merged with the previous kernels because it requires as aninput
the motion vectors for the whole image. Figure 7 illustratesthe de-
scribed parallelization scheme, with the first three kernels merged
in a singleteams region, plus a secondteams regions composed
of the sole last kernel. The figure also shows the breakdown ofthe
speedup for these two teams regions. The CCR for cvADD is very
small (only an addition is performed per pixel), and this justifies
the small speedup achieved for this kernel, which overall impacts
the total speedup for the application.

5.2 Comparison with flatparallel for construct

The comparison with the flatparallel for construct shows a
much lower efficiency (speedup is always below16×). As ex-
plained in Section 4 this is due to the poor locality of computa-

5 2015/9/1

#pragma omp target teams
num_teams(4)
#pragma omp distribute
for(stripe = 0;

stripe < N_STRIPES;
++stripe)

{

dma_in(in[stripe]);

CSC (in[stripe], tmp1[stripe]);

cvTHR (tmp1[stripe], tmp2[stripe]);

cvMOM (tmp2[stripe], xy[stripe]);
}

#pragma omp barrier

#pragma omp distribute
for(stripe = 0;

stripe < N_STRIPES;
++stripe)

{

dma_in(in[stripe]);
dma_in(track[stripe]);

cvADD (in[stripe], track[stripe], out[stripe]);

dma_out(out[stripe]);
}

}

void CSC(in, tmp1) {
#pragma omp for
for(i = 0; i < … ; i++){

[A L G O R I T H M]

}

}

void cvTHR(tmp1, tmp2) {
#pragma omp for
for(i = 0; i < … ; i++){

[A L G O R I T H M]

}

}

void cvMOM(tmp2, xy) {
#pragma omp for
for(i = 0; i < … ; i++){

[A L G O R I T H M]

}

}

void cvADD(in1, in2, out) {
#pragma omp parallel for
for(i = 0; i < … ; i++){

[A L G O R I T H M]

}

}

distributed nested team

0

10

20

30

40

50

60

teams
region 1

teams
region 2

overall

SPEEDUP

Figure 7. Breakdown of CT kernels speedup.

tion generated by a deployment scheme which only envisions a
global master for the entire manycore. This master will manage
data stripes transfers into the local TCDM, but several threads from
the same logical team reside on remote clusters. Such threads will
have to traverse the NoC and compete with several other transac-
tions, both for data requests coming from other threads and for in-
struction cache refills. It has to be pointed out that it is notonly the
actual parallel computation that encounters such remote commu-
nication issues. The implementation of the OpenMP runtime sup-
port also relies on data structures that are hosted in the TCDM
of the cluster that hosts the master thread. Thus, every timethat
the parallel code requires explicit or implicit thread synchroniza-
tion (e.g., barriers, end of parallelization constructs, dynamic loop
scheduling, locks, etc.), additional remote transactionsare gener-
ated. These results are even more important in the light of the fact
that the non-expert programmer will always tend to use the flat par-
allel for approach as a default.

5.3 Comparison with nestedparallel for construct

Probably the most surprising result is that achieved with the nested
parallel for construct. Due to the above mentioned reasons re-
garding poor data locality and remote team management it wasex-
pected that the speedus would be limited. The extent to whichthis
would impact performance could not entirely be expected. Nested
parallel regions have traditionally been used in large HPC systems
to improve the performance, however this was always done in com-
bination with language or runtime constructs to control thread-to-
core binding. Thus, while logically nested parallel regions and dis-
tributed teams are equivalent – in terms of how the work is split at
the outermost level amonglocal masters, and how innermost teams
work in strict collaboration with these masters – physically the lack
of control of where such masters and their slaves are mapped in the
platform leads to extremely poor results. Note that, compared to
the flatparallel for construct, in this case the impact of run-
time library overhead is much more pronounced, as managing and

synchronizing nested parallel teams generates much highercom-
munication volume [9].

6. Related Work
The latest OpenMP 4.0 specifications introduce relevant features
for accelerator exploitation, but not many devices are currently
OpenMPv4-enabled. Among commercial devices Texas Instrument
Keystone II [19] and Intel Xeon Phi [3] are probably the most repre-
sentative examples. Stotzer [18] and Schmidl [17] present aperfor-
mance assessment of flat parallelism for these architecture. These
architecture, different from the embedded manycores considered in
our work, rely on a coherent shared memory system and on multi-
level data-cache hierarchy.

Bertolli et al. [2] propose a method to coordinate GPGPU
threads mimicing the OpenMP 4.0 specification for Nvidia CUDA
GPGPUs. [2] explores the utilization of the newteam anddistribute
pragmas to implement efficiently dynamic parallelism on GPGPU
accelerators. The focus of this work is however more on presenting
a compiler implementation rather than assessing the effectiveness
of the language constructs. Also Liao et al. [8] present an OpenMP
4.0 source to source compiler for Nvidia GPU. The compiler is
based on the ROSE Compiler Infrastructure [7] and supports the
OpenMP 4.0team anddistribute directives to deploy threads
among CUDA cores. A more recent work from Yang et al. [20]
presents a directive-based APIsla OpenMP that extends the CUDA
language to enable dynamic nested parallelism and task level par-
allelism within a kernel. Ozen et al. [14] evaluate how different
parallel programming interfaces, like OpenMP and other patterns
for heterogeneous system can influence the deployment and the
efficiency of kernel execution on GPGPUs in OmpSs. Unlike what
is presented here, the focus for all these works in on GPGPU-like
accelerator.

6 2015/9/1

7. Conclusion
Manycore-based embedded heterogeneous SoCs are nowadays
HPC capable, but efficiently programming them is a cumbersome
task. OpenMP has always provided a user-friendly interfaceto ap-
plication development, based on compiler directives that abstractly
highlight parallelism in a sequential program. The latest specifica-
tion version 4.0 introduces new constructs for computationoffload-
ing, as well as directives to deploy parallel computation with high
data locality. This paper explores the capabilites of OpenMP v4.0
at exploiting the massive parallelism available in embedded het-
erogeneous SoCs. In particular, our experiments demonstrate that
the newteams distribute construct allows to abstractly expose
the clustered organization of most many-cores, thus achieving very
efficient resource exploitation. Compared to standard parallel loops
(the most widely used by inexpert programmers) with no awareness
of the hierarchical interconnect and memory organization,these
new construct enable major improvements in terms of speedup.
Nested parallel loops, that logically provide a similar abstraction
to theteams distribute construct, in absence of architectural
awareness surprisingly prevent every speedup at all, in virtually
every considered case.

Acknowledgments
This work was supported by EU project FP7 P-SOCRATES
(611016).

References
[1] Adapteva. Epiphany III 16-core Chip Product. URL

http://adapteva.com/docs/e16g301_datasheet.pdf .

[2] C. Bertolli, S. F. Antao, A. E. Eichenberger, K. O’Brien,Z. Sura,
A. C. Jacob, T. Chen, and O. Sallenave. Coordinating gpu threads
for openmp 4.0 in llvm. InProceedings of the 2014 LLVM Compiler
Infrastructure in HPC, LLVM-HPC ’14, pages 12–21, Piscataway,
NJ, USA, 2014. IEEE Press. ISBN 978-1-4799-7023-0. . URL
http://dx.doi.org/10.1109/LLVM-HPC.2014.10 .

[3] C. George. Knights corner, intels first many integrated core (MIC)
architecture product. InHot Chips.

[4] A. Heinecke, M. Klemm, and H.-J. Bungartz. From GPGPU to
many-core: Nvidia Fermi and Intel Many Integrated Core architecture.
Computing in Science & Engineering, 14(2):78–83, 2012.

[5] Kalray S.A. Kalray MPPA Manycore 256. URL
http://www.kalrayinc.com/kalray/products/#processors .

[6] Khronos Group. The OpenCL specification. URL
http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf .

[7] Lawrence Livermore National Laboratory. ROSE CompilerInfras-
tructure. URLhttp://rosecompiler.org/ .

[8] C. Liao, Y. Yan, B. R. de Supinski, D. J. Quinlan, and B. Chapman.
Early experiences with the openmp accelerator model. InOpenMP
in the Era of Low Power Devices and Accelerators, pages 84–98.
Springer, 2013.

[9] A. Marongiu, P. Burgio, and L. Benini. Fast and lightweight support
for nested parallelism on cluster-based embedded many-cores. In
Design, Automation Test in Europe Conference Exhibition (DATE),
2012, pages 105 –110, 2012.

[10] A. Marongiu, A. Capotondi, G. Tagliavini, and L. Benini. Simplifying
many-core-based heterogeneous soc programming with offload direc-
tives. Industrial Informatics, IEEE Transactions on, 11(4):957–967,
Aug 2015. ISSN 1551-3203. .

[11] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Hau-
gou, F. Clermidy, and D. Dutoit. Platform 2012, a many-core comput-
ing accelerator for embedded SoCs: performance evaluationof visual
analytics applications. In49th ACM/EDAC/IEEE Design Automation
Conference (DAC).

[12] OpenACC. The OpenACC Application Programming Interface. URL
http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf .

[13] OpenMP ARB. OpenMP 4.0 application program interface.URL
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf .

[14] G. Ozen, E. Ayguadé, and J. Labarta. On the roles of the programmer,
the compiler and the runtime system when programming accelerators
in openmp. InUsing and Improving OpenMP for Devices, Tasks, and
More, pages 215–229. Springer, 2014.

[15] Pete Decher. Embedding HPC: A rocket in your pocket. URL
http://www.embedded.com/design/prototyping-and-development/4230

[16] E. Rosten, R. Porter, and T. Drummond. Faster and better: a machine
learning approach to corner detection.IEEE transactions on pattern
analysis and machine intelligence, 32:105–19, 2010.

[17] D. Schmidl, T. Cramer, S. Wienke, C. Terboven, and M. S. Müller.
Assessing the performance of openmp programs on the intel xeon phi.
In Euro-Par 2013 Parallel Processing, pages 547–558. Springer, 2013.

[18] E. Stotzer, A. Jayaraj, M. Ali, A. Friedmann, G. Mitra, A. P. Rendell,
and I. Lintault. Openmp on the low-power ti keystone ii arm/dsp
system-on-chip. InOpenMP in the Era of Low Power Devices and
Accelerators, pages 114–127. Springer, 2013.

[19] Texas Instruments Inc. KeyStone II system-on-chip 66ak2hx. URL
http://www.ti.com/lit/ds/symlink/66ak2h12.pdf .

[20] Y. Yang and H. Zhou. Cuda-np: Realizing nested thread-level paral-
lelism in gpgpu applications. InACM SIGPLAN Notices, volume 49,
pages 93–106. ACM, 2014.

7 2015/9/1

http://adapteva.com/docs/e16g301_datasheet.pdf
http://dx.doi.org/10.1109/LLVM-HPC.2014.10
http://www.kalrayinc.com/kalray/products/#processors
http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
http://rosecompiler.org/
http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.embedded.com/design/prototyping-and-development/4230994/A-rocket-in-your-pocket
http://www.ti.com/lit/ds/symlink/66ak2h12.pdf

	Introduction
	Architectural Template
	Background
	Benchmarks and Acceleration Schemes
	Experiments
	Effectiveness of the teams distribute construct
	Comparison with flat parallel for construct
	Comparison with nested parallel for construct

	Related Work
	Conclusion

