On the Effectiveness of OpenMP teams for

Programming Embedded

Alessandro Capotondi

Universita di Bologna
alessandro.capotondi@unibo.it

Abstract

With the introduction of more powerful and massively pakdim-
bedded processors, embedded systems are becoming HP@capab
In particular heterogeneous on-chip systems (SoC) thatleca
general-purpose host processor to a many-core accelaratde-
coming more and more widespread, and provide tremendolks pea
performance/watt, well suited to execute HPC-class pragrdhe
increased computation potential is however traded off &zeero-
gramming. Application developers are indeed required tauna
ally deal with outlining code parts suitable for accelemafipar-
allelize there efficiently over many available cores, anthestrate
data transfers to/from the accelerator. In addition, smost many-
cores are organized as a collectionchisters featuring fast local
communication but slow remote communication (i.e., to heot
cluster’s local memory), the programmer should also take o
properly mapping the parallel computation so as to avoid pata
locality. OpenMP v4.0 introduces new constructs for corapian
offloading, as well as directives to deploy parallel compatein a
cluster-aware manner. In this paper we assess the effeetiseof
OpenMP v4.0 at exploiting the massive parallelism avadlaiem-
bedded heterogeneous SoCs, comparing to standard pévafel
over several computation-intensive applications fromlithear al-
gebra and image processing domains.

Categories and Subject Descriptors C.1.4 [Computer Systems
Organizatio): Processor Architectures—Parallel Architectures;
D.1.3 [Softwaré Programming Techniques—Concurrent Pro-
gramming; D.3.3%oftwaré: Programming Languages—Language
Constructs and Features

General Terms Performance assessment

Keywords Heterogeneous systems, manycores, HPC, NUMA,
nested parallelism, OpenMP

1. Introduction

Architectural heterogeneity has proven an effective degagadigm
to cope with an ever-increasing demand for computationalepo
within tight energy budgets, virtually in every computingndain.
Programmable many-core accelerators are nowadays widely u

[Copyright notice will appear here once "preprint’ opti@rémoved.]

Manycore Accelerators

Andrea Marongiu

Swiss Federal Institute of Technology (ETH Zurich)
a.marongiu@iis.ee.ethz.ch

in high-performance computing systems|[15] as well as inestnb
ded devices, where they operate as co-processors undemnttielc

of a general-purpose CPU (usually called tmes). Many-core
accelerators are composed of several tens of simple pingess
elements (PEs), where highly-parallel computation kermélan
application can be offloaded to improve overall performanat.
From the hardware design viewpoint, the most common approac
is that of organizing the computation resourceslmsters each
featuring a small-medium number of PEs tightly coupled talo
L1 memory (typically designed as a scratchpad). This azchital
template is no longer solely used in general-purpose geappio-
cessing units (GPGPUSs), but it is widespread also in emluzkdde
manycores [11] [5] [1]([4].

The tremendous GOps/Watt that such architectures canvachie
are traded-off for an increased programming complexitiemsive
and time-consuming rewrite of applications is requiredhgispe-
cialized programming paradigms. OpenCL [6], one of the most
representative examples of such category of programmind- mo
els, aims at providing a standardized way of programmindh suc
accelerators, however it offers a very low-level prograngrstyle.
Higher-level programming styles are offered by directdaesed ap-
proaches such as OpenACCI[12] or OpenMR [13], which has in-
cluded in the latest specification extensions to managdeaxaters.

The main advantage of OpenMP-like approaches is that of en-
abling users to express software optimizations in a higlelyilile
and abstract manner, focusing on algorithmic details ratiwen
architecture-specific aspects. Offloaded regions of codesea
ferred as target regions and may include sequences of d&juen
parallel regions, and possibly nested parallel regionstédepar-
allelism is particularly important to effectively use macyres or-
ganized as a fabric oflusters Indeed, while communication to
local L1 memory leverages fast and high-bandwidth charseth
as crossbars, inter-cluster communication is subjecteumdform
memory access (NUMA) effects, as it relies on multi-hop $eam
tions over a network-on-chip, which offers lower bandwidiid
higher latency.

OpenMP 4.0 offers constructs to specify the distribution of
work among clusters in a cluster-aware manner. Specifjcdiéy
teams construct allows the creation of a team of worker threads
each belonging to a different cluster. Each team master foam t
create nested parallel teams, whose threads are recmotaddcal
resources. In a scratchpad-based architecture, the nthstad
is typically responsible for bringing data in and out via DMA
transfers, thus it is extremely important that the threadere
mapping follows a cluster-aware policy such as the one edatny
the team construct. Distributing work among threads in a locality
aware manner can be done at the loop-level usindiberibute
clause.

In this paper we explore the benefits of using cluster-aware
workload distribution in an embedded many-core accelesaton-

2015/9/1

host many-core
CPU CPU cluster cluster
Ls L1s L1 mem L1 mem
MMU MMU Ng--- @7
12$ 12$ o T
I I NI — L2 mem

Coherent interconnect

Interconnect

Main memory

Figure 1. Heterogeneous embedded SoC template

sidering several benchmarks from the linear algebra anderpeo-
cessing domain, and parallelizing them with OpenMP 4.0. igfe-h
light the benefits of such recent additions to the specifioaticom-
paring the results to a flat parallelization scheme, i.ee, which
uses all the processors available from a single logicabthteam.
In this case only a single master thread for the whole platfisr
available to orchestrate data transfers, which generatepuata-
tion with poor locality. We also compare the distributed rgzh
to the use of standard OpenMP nested parallel regions amd sho
that in absence of cluster awareness these perform eveligpoor

The rest of the paper is organized as follows. Sefion 2 theescr
the target heterogeneous SoC and cluster-based manyect@rS
B discusses the key background notions for OpenMP v4.0idBect
[introduces the considered benchmarks and discuss aatoater
and parallelization schemes. Sectidn 5 presents the dialuaf
the described schemes. Secfidn 6 describes related worgexid
tion[4 concludes the paper.

2. Architectural Template

In this work we consider as a many-core based heterogengesus s
tem the ST Microelectronics STHORM platform [11], but the re
sults discussed later can be applied to a broader class afedev
which share with STHORM a common architectural templatg- Fi
ure[d shows the block diagram of the target heterogeneousdmb
ded system template. A powerful general-purpose procesiser
hos) is coupled to a programmable manycore accelerator com-
posed of several tens of simple processors, where criticapata-

tion kernels of an application can be offloaded to improveraVe
performance/watt [1,4] 5, 11].

Similar to GPGPUs, the many-core accelerator leverages a

multi-cluster design to overcome scalability limitatiof§s [11].
Processors within a cluster are tightly-coupled to locaktdatch-
pad memory, which implies low-latency and high-bandwidiime
munication. Globally, the many-core accelerator levesagepar-
titioned global address space (PGAS). Every remote meneamy c
be directly accessed by each processor, but inter-clustemu-
nication travels through a NoC, and is subject to non-unifor
memory access (NUMA) latency and bandwidth. Unlike the-typi
cal GPU data-parallel cores, that rely on a common fetcloftiiec
phase, the processors considered here are simple indep&i8€
cores, perfectly suited to execute both single-instructioultiple-
data (SIMD) and multiple-instruction, multiple-data (MDJl types

of parallelism. This allows to efficiently support a programg
model such as OpenMP, that leverages not only data-level par
allelism, but also sophisticated forms of dynamic and iutag
parallelism (e.g., tasking).

[[test and set | I

Banko | TCOM(G2banks) gank31

Data Interconnect
(MoT)

Peripheral
Interconnect
(MoT)

Figure 2. On-chip shared memory cluster

The simplified block diagram of the targetuster is shown
in Figure[2. It contains sixteen RISC32 processor coresh eac
featuring a private instruction cache. Processors conratmi
through a multi-banked, multi-ported Tightly-Coupled Baem-
ory (TCDM). This shared L1 TCDM is implemented as explicitly
managed SRAM banks (i.e., scratchpad memory), to which pro-
cessors are interconnected through a low-latency, higikkith
data interconnect which allows 2-cycle L1 accesses (oneefor
quest, one for response). This is compatible with pipeliggtid for
load/store for most processors, hence it can be execute@vr
without stalls — in absence of conflicts. The interconnecgap-
ports up to 16 concurrent processor-to-memory transactigtiin
a single clock cycle, given that the target addresses betmdg-
ferent banks (one port per bank). Multiple concurrent restde
same address happen in the same clock cycle (broadcastal A re
conflict takes place only when multiple processors try teeasdif-
ferent addresses within the same bank. In this case thestscpre
sequentialized on the single bank port. To minimize the gbdhy
of conflicts i) the interconnection implements addressrieéeing
at the word-level; ii) the number of banks is M times the nundfe
cores (M=2 by default).

Processors can synchronize by means of standard read/write
operations to an area of the TCDM which providest-and-set
semantics (a single atomic operation returns the conterhef
target memory location and updates it).

Since the L1 TCDM is typically very small (256KB for STHORM)
it is impossible to permanently host all data therein or tsttarge
data chunks. The software must thus explicitly orchestdatia
transfers from main memory to L1, to ensure that the most fre-
quently referenced data at any time are kept close to theeproc
sors. To allow for performance- and energy- efficient trarssfthe
cluster is equipped with a DMA engine.

The OpenMP v4.0 implementation that we consider for our ex-
ploration is based on our previous work|[10] and has beemdgt
to include all the features for kernel offloading.

3. Background

OpenMP v4.0/[13] introducesffloadingdirectives to program ac-
celerators. Similar to any previous OpenMP construct, eldis
rectives apply to the code block that they enclose. The key co
struct is thetarget directive, which highlights the structured code
block that should be compiled and loaded for execution orde-a
vice. Themap clause can be additionally used to specify which data
items have to be transferred to and from the device. In audithe
target data directive allows to allocate and transfer data before
the actual offload takes place (i.e., a sort of data pre-feg¢hThe
device clauses allows to specify the exact device to use if more
than one is present in the system.

2015/9/1

STRAS Matrix multiplication using Strassen decomposition
GSID Generalized squared interpoint distance

LRFR Local reference frame radius (surface matching)
HIST Histogram interpolation

NCC Normalized cross-correlation algorithm

CT Object tracking based on a specific color

FAST Corner detector [16]

Table 1. Benchmarks

Within atarget region most standard OpenMP constructs for
parallelism can be used. Thus, upon offload a single threais
ated that starts execution of the target region, uniésallel con-
struct is encountered. Since many accelerators are orghinio
clusters and since inter-cluster communication is typically destl
than internal transactions, OpenMP v.4.0 also introdugestizes
to abstractly expose architecture organization at therarodevel.
Theteamns directive groups the threads of a device into setar(3
that are later mapped onto physical clusters, thus acljewi
form and high-locality inter-thread communication. Thegmam-
mer can control the number of teamsuf_teams clause) and the
maximum number of threads in each teath{ead_limit clause)
along with the teams directive, respectively. One of thedhs in
each team is designated teamasterand the structured block fol-
lowing the directive is executed by all team masters actusslif-
ferent teams. Upon team start only team masters executegiseq
tially, one per cluster. Whengarallel directive is encountered,
all the threads in each team start execution, to collaboratke
execution of the enclosed structured block.

As most of the parallel work in offloaded kernels is typically
found within loops, thelistribute directive is provided to dis-
tribute loop iterations across teams, and then acrossithtbarein.
Note that the same thing could not be simply achieved by nest-
ing twoparallel for constructs, as this would require manually
rewriting the loop as a nested loop (with outer and inner $pop

These new constructs allows to achieve a cluster-awareingpp
of threads but also loops, without requiring that the progreer
explicitly handles these aspects. In the next section wetithte
how these constructs can be used to efficiently offload coatiput
to a many-core accelerator.

4. Benchmarks and Acceleration Schemes

In this section we briefly describe the six benchmarks usedudo
exploration, and the acceleration schemes enabled by taaNIp
v4.0 offload directives. The benchmarks were selected fioen t
linear algebra, image processing and computer vision dwmsmnand
are representative of the computational kernels typictflpaded
to many-core accelerators. A brief description can be fonfidble

FAST is particularly sensitive to input data, in terms of the
available degree of parallelism. The two parameters thpaatthe
performance the most are input image size and corner defbigy
former influences the overall number of iteration. Being tbee
computation kernel of FAST particularly fine-grained, ayvemall
number of iterations per threads results in visible paliaidon
overheads. The latter influences the actual parallel wohlchvis
protected by an if statement that quickly filters out imageklthat
clearly don’t contain a corner. For this reason, we condigee Six
variants of the benchmark execution, with as many diffenepat
images:

¢ 1.5%_S 1.5% corner density in a small image (QVGA)
* 6%_S 6% corner density in a small image
® 15%_S 15% corner density in a small image

e 1.5%_L 1.5% corner density in a large image (VGA)
® 6%_L 6% corner density in a large image
e 15%_L 15% corner density in a large image

Since in STHORM the host and the accelerator physicallyeshar
the main L3 memaory, the offload infrastructure by default@im
passes pointers to data structures therein, rather thgmgofhem
to the accelerator space. However, for improved performam
energy efficiency, data has to be moved in the TCDM. In absehce
a data cache this has to be explicitly done in the program Ma&D
transfers.

Each of the considered benchmarks operates on input angtoutp
data sets that are too large to fit in the TCDM. Thus, such data
structures are divided istripes which are transferred in and out of
the TCDM following a traditional double buffering scheme.

DMA transfers of data stripes are typically taken care of by a
single thread (thenaste), from within an outer loop. Additional
threads are involved in parallel computation when the feanis
complete. To parallelize the target benchmarks we have thsed
different approaches.

The simplest approach to use all available cores is thatesf cr
ating a large parallel region which recruits them all. Wd tiab
approacHlat parallelism, as it does not take into account the hierar-
chical structure of the cluster organization (intercopeemory).
Figure[3 shows how this parallelization scheme deploysatlse
onto available cores. Thearget directive starts execution of the
enclosed region onto a single core, which orchestrates DisliAst
fers then jumps into the KER function. Here the main loop igni,
and it is parallelized with @arallel for construct. By default,
if no number of threads is specified all the available thresadsn-
volved. Note that since the master thread manages the D\b&-tra
fers with no awareness of the clusters, the data used byeddk in
the parallel region is held in a single buffer (BUFO) that gicglly
reside in the TCDM of the cluster that hosts the master thr&ad
a consequence, the threads that live in the same clustee asath
ter will enjoy fast data access, whereas threads belongingher
clusters will experience longer access times, leading balamced
computation.

Figurel4 shows the second parallelization approach, whidbk a
awareness of the clustered nature of the platform to the. ¢dele
the teams directive is used to create an outer parallel team that
recruits threads from different clusters. These threatio@tome
local masters of these clusters, and will orchestrate DMAdfers
to/from the local TCDM. Thedistribute directive is used to
partition the outermost loop among local masters, and tlills w
make each master have its own data buffer in the local L1 mgmor
When a newparallel construct is encountered, an inner thread
team is created, that shares high locality computation thighocal
master.

A third parallelization approach is considered for the sake
comparison: standard nested parallel regions. In priadgppossi-
ble to specify the creation of an outer parallel region wihrany
threads as clusters, which will act as local master to theg®ns.
Additional parallelism can then becreated when requirecdst-

2015/9/1

#pragma omp target map(in, out)
{
for(stripe = 0;
stripe < N_STRIPES;
++stripe)
{
dma_in(in[stripe]);

KER (in[stripe], out{stripe]);
dma_out{out(stripe]);

}
}

}

i void KER(int,in2, out) {

#pragma omp parallel for

for(i =0; i< ..
[ALGORITHM]

i+4) {

flat parallel thread team

& EIEEEEEE) |
| |
T

r—

[l master thread

q outer team

R
HlEEEEEEE

O slave thread

V+a & innerteam
:

Figure 3. Flat parallelization of the Color Tracking application.

#pragma omp target teams
num teams (4) map (in, out)
#pragma omp distribute

i void KER(in1, out) {
i #pragma omp parallel for

for(i = 0;

i< .o i+

[ALGORITHM]

1

for(stripe = 0;
stripe < N_STRIPES;
++stripe)
{
dma_in(in[stripe]);

i)
L. distributed nested team

cvADD (infstripe], out[stripe]);

dma_out({out[stripe]);
}
t

[l master thread

..... .
q outer team i=s 1inner team

Figure 4. Distribute parallelization for color tracking.

5. Experiments

In this section we describe the results collected by runrirey

various benchmarks on STHORM when the three deployment ap-

proaches are considered. As a main metric of performancewe c

sider speedup of the parallel application versus the sdiglien
Results for this experiment are shown in Figure 6.

ing aparallel construct within the first. Note that however this
scheme lacks a notion of the cluster organization, and disréa
the outer and inner regions will be recruited in an unspetifie
der. In the STHORM implementation this order is sequentiaih-
sidering the list of all the processors available. Thusating an
outermost region of four threads recruits the local masters the
same cluster. As a consequence, the code for DMA management
will create four data buffers that reside in the same TCDMeln
most teams will be composed of threads that physically lgeton
more than one cluster, which will create significantly highest The most notable finding is that the cluster-aware worklagalay/-
for their runtime management (in addition to poor data libgal ment enabled by théistribute directive allows to achieve very
Figure[% shows how this approach deploys threads and computa high speedups and thus to make an effective use of many cores.
tion to the platform. Four out of seven benchmarks achieve nearly ideal speetiopga
60x), considering the best result for FAST speedup. As already
explained, FAST leverages very fine-grained paralleliatifor
which the overhead introduced by runtime support for negéedl-

5.1 Effectiveness of the&eams distribute construct

4 2015/9/1

#pragma omp target map (in, out)
#pragma omp parallel num threads(4)
for(stripe = 0; -
stripe < N STRIPES;
++stripe)
{

void KER(in1, out) {
#pragma omp parallel for \
nu.m_threads (16)
for(i =0; i < .. ;
[ALGORITHM]

i++)

S T-X0 =10 e[J——

dma_in(in[stripe]);
KER (in[stripe], out[stripe]);
dma_out({out[stripe]);

¥
}

.| master thread

O slave thread

q outer team LI

inner team

Figure 5. Nested parallel constructs on the Color Tracking applcati

SPEEDUP

[oe]

STRAS GSID LRFR HIST NCC

o flat parallel for 15,20 14,96 15,03 8,02 12,02
nested parallel for 1,02 1,01 1,02 0,89 0,96
M teams distribute 47,26 60,83 59,27 41,61 61,48

1.5% S 6%._S 15%.S 1.5%.L 6%_L 15%_L
cr FAST

0,77 6,89 7,30 7,83 10,10 9,67 15,63

0,83 0,92 0,88 0,99 1,01 0,98 1,04

19,56 22,67 30,99 28,92 45,76 49,26 60,20

Figure 6. Comparison of various approaches to nested parallelisgostup

lelism has a higher impact. Thus, when the image size is vaglls
(QVGA) the speedups are limited (up € x) The corner density

cute all the kernels in sequence). The last kernel, cvADDra#n
be merged with the previous kernels because it requires pan

is also confirmed to have a big impact on performance, as shownthe motion vectors for the whole image. Figlie 7 illustrakesde-

by the variance among the three configurations (1.5%, 6%,15%
Note that already for moderately large images (VGA) the dppse
get as high as close to ideal.

The only application that achieves poor speedup in this gonfi
ration is CT, thus it is worth a bit more of investigation. Gebased
tracking consists of a cascade of four functional kernelsloC
space conversion (CSC), threshold-based color filter (&)l lrho-
tion vector calculation (cvMOM) and motion vector to refece
frame addition (cvADD). Each of these kernels containkelitbm-
putation, thus to improve the computation to communicatadio
(CCR) we merge the CSC, cvThresh and cvMOM kernels into a
single kernel (i.e., a single data stripe transfer is reglibo exe-

scribed parallelization scheme, with the first three kermeérged

in a singleteams region, plus a secontkams regions composed

of the sole last kernel. The figure also shows the breakdowineof
speedup for these two teams regions. The CCR for cvADD is very
small (only an addition is performed per pixel), and thidtifies

the small speedup achieved for this kernel, which overgliaiats

the total speedup for the application.

5.2 Comparison with flatparallel for construct

The comparison with the flagtarallel for construct shows a
much lower efficiency (speedup is always beldéx). As ex-
plained in Sectiof]4 this is due to the poor locality of conaput

2015/9/1

#pragma omp target teams
num_teams (4)
#pragma omp distribute
for (stripe 0;
stripe < N_STRIPES;
++stripe)
{
dma_in(in[stripe]);

CSC (in[stripe], tmp1[stripe]);
cvTHR (tmp1[stripe], tmp2[stripe]);
cvMOM (tmp2[stripe], xy[stripe]);

}

#pragma omp barrier

#pragma omp distribute
for (stripe 0;
stripe < N_STRIPES;
++stripe)
{
dma_in(in[stripe]);
dma_in(track[stripe]);

cvADD (in[stripe], track[stripe], out[stripe]);

dma_out(out[stripe]);

4

void CSC(in, tmp1) { |

void cvTHR(tmp1, tmp2) { |

void cvMOM(tmp2, xy) { |

void cvADD(in1, in2, out) {

#pragma omp parallel for

for(i = 0; 1 < .. ; i++){
[ALGORITHM]

distributed nested team

SPEEDUP
60
50
40
30
20
10 I
0 |
teams teams overall
region 1 region 2

Figure 7. Breakdown of CT kernels speedup.

tion generated by a deployment scheme which only envisions a synchronizing nested parallel teams generates much hagimr

global master for the entire manycore. This master will ngana
data stripes transfers into the local TCDM, but severakttisefrom
the same logical team reside on remote clusters. Such threild
have to traverse the NoC and compete with several otherattans
tions, both for data requests coming from other threads anithf
struction cache refills. It has to be pointed out that it isordy the
actual parallel computation that encounters such rematamee
nication issues. The implementation of the OpenMP runtiope s
port also relies on data structures that are hosted in theM CD
of the cluster that hosts the master thread. Thus, every ttiate
the parallel code requires explicit or implicit thread syraniza-
tion (e.g., barriers, end of parallelization construcigaimic loop
scheduling, locks, etc.), additional remote transactmmsgener-
ated. These results are even more important in the lighteofabt
that the non-expert programmer will always tend to use th@éea
allel for approach as a default.

5.3 Comparison with nestedbarallel for construct

Probably the most surprising result is that achieved withrtbsted
parallel for construct. Due to the above mentioned reasons re-
garding poor data locality and remote team management iewas
pected that the speedus would be limited. The extent to wthish
would impact performance could not entirely be expecteditéée
parallel regions have traditionally been used in large H{&Iesns

to improve the performance, however this was always donerim ¢
bination with language or runtime constructs to controé#u-to-
core binding. Thus, while logically nested parallel regiamd dis-
tributed teams are equivalent — in terms of how the work i& apl
the outermost level amorigcal mastersand how innermost teams
work in strict collaboration with these masters — physictie lack

of control of where such masters and their slaves are mappéd i
platform leads to extremely poor results. Note that, comgao
the flatparallel for construct, in this case the impact of run-
time library overhead is much more pronounced, as managidg a

munication volume |9].

6. Related Work

The latest OpenMP 4.0 specifications introduce relevarttifes
for accelerator exploitation, but not many devices are enily
OpenMPv4-enabled. Among commercial devices Texas Ingmtam
Keystone 11[[19] and Intel Xeon Phil[3] are probably the mesine-
sentative examples. Stotzer[18] and Schmidl [17] preseetfor-
mance assessment of flat parallelism for these architecthwese
architecture, different from the embedded manycores densi in
our work, rely on a coherent shared memory system and on-multi
level data-cache hierarchy.

Bertolli et al. [2] propose a method to coordinate GPGPU
threads mimicing the OpenMP 4.0 specification for Nvidia GUD
GPGPUs/[2] explores the utilization of the neeam anddistribute
pragmas to implement efficiently dynamic parallelism on GRG
accelerators. The focus of this work is however more on pitéesgp
a compiler implementation rather than assessing the eféeess
of the language constructs. Also Liao et al. [8] present aerfMP
4.0 source to source compiler for Nvidia GPU. The compiler is
based on the ROSE Compiler Infrastructure [7] and suppb#s t
OpenMP 4.0team anddistribute directives to deploy threads
among CUDA cores. A more recent work from Yang et al/ [20]
presents a directive-based AR&sOpenMP that extends the CUDA
language to enable dynamic nested parallelism and taskpave
allelism within a kernel. Ozen et al. [14] evaluate how diffiet
parallel programming interfaces, like OpenMP and othetepas
for heterogeneous system can influence the deployment &nd th
efficiency of kernel execution on GPGPUs in OmpSs. Unliketwha
is presented here, the focus for all these works in on GPGiU-|
accelerator.

2015/9/1

7. Conclusion [12] OpenACC. The OpenACC Application Programming InteeflaURL

Manycore-based embedded heterogeneous SoCs are nowadays http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf.
HPC capable, but efficiently programming them is a cumbeesom ~[13] OpenMP ARB._ OpenMP 4.0 application program interfaddRL

task. OpenMP has always provided a user-friendly interfacep- http:// WWW'°penmff'°rg/ mp-documents/Opent(P4.0.0. pdf;

plication development, based on compiler directives thatractly [14] G. Ozen, E. Ayguadé, and J. Labarta. On the roles of tagrammer,
highlight parallelism in a sequential program. The latpstcifica- the compiler and the runtime system when programming ates

tion version 4.0 introduces new constructs for computatitinad- in openmp. InUsing and Improving OpenMP for Devices, Tasks, and

ing, as well as directives to deploy parallel computatiothvigh More, pages 215-229. Springer, 2014.

data locality. This paper explores the capabilites of OpenM.0 ~ [15] Pete Decher. Embedding HPC: A rocket in your pocket. URL
at exploiting the massive parallelism available in embelddet- http://www . embedded . com/design/prototyping-and-development/42:
erogeneous SoCs. In particular, our experiments demoagtrat [16] E. Rosten, R. Porter, and T. Drummond. Faster and betterachine

the newteams distribute construct allows to abstractly expose learning approach to corner detectiofEEE transactions on pattern

the clustered organization of most many-cores, thus aicijexery analysis and machine intelligencé2:105-19, 2010.

efficient resource exploitation. Compared to standardlightaops [17] D. Schmidl, T. Cramer, S. Wienke, C. Terboven, and M. Sullst.

(the most widely used by inexpert programmers) with no aness Assessing the performance of openmp programs on the irgal plei.

of the hierarchical interconnect and memory organizattbese In Euro-Par 2013 Parallel Processingages 547-558. Springer, 2013.
new construct enable major improvements in terms of speedup [18] E. Stotzer, A. Jayaraj, M. Ali, A. Friedmann, G. Mitra, R. Rendell,

Nested parallel loops, that logically provide a similar tadostion and I. Lmtali]lp. Openmp on thﬁ Iow-pO\fNer ti keystone ii arsp'dd
to the teams distribute construct, in absence of architectural system-on-chip. IOpenMP in the Era of Low Power Devices an

awareness surprisingly prevent every speedup at all, inally Accelerators pages 114-127. Springer, 2013.)
every considered case. [19] Texas Instruments Inc. KeyStone Il system-on-chipk@6a. URL

http://www.ti.com/lit/ds/symlink/66ak2h12.pdf.
[20] VY. Yang and H. Zhou. Cuda-np: Realizing nested threaeil paral-

Acknowledgments lelism in gpgpu applications. IACM SIGPLAN Noticesvolume 49,
This work was supported by EU project FP7 P-SOCRATES pages 93-106. ACM, 2014.

(611016).

References

[1] Adapteva. Epiphany Il 16-core Chip Product. URL

http://adapteva.com/docs/e16g301_datasheet.pdf.

[2] C. Bertolli, S. F. Antao, A. E. Eichenberger, K. O’'Bried, Sura,
A. C. Jacob, T. Chen, and O. Sallenave. Coordinating gpadsre
for openmp 4.0 in livm. IrProceedings of the 2014 LLVM Compiler
Infrastructure in HPG LLVM-HPC '14, pages 12-21, Piscataway,
NJ, USA, 2014. IEEE Press. ISBN 978-1-4799-7023-0. . URL
http://dx.doi.org/10.1109/LLVM-HPC.2014.10|

[3] C. George. Knights corner, intels first many integratedec(MIC)
architecture product. Ihlot Chips

[4] A. Heinecke, M. Klemm, and H.-J. Bungartz. From GPGPU to
many-core: Nvidia Fermi and Intel Many Integrated Core geclure.
Computing in Science & Engineering4(2):78-83, 2012.

[5] Kalray S.A. Kalray MPPA Manycore 256. URL
http://www.kalrayinc.com/kalray/products/#processors.
[6] Khronos Group. The OpenCL specification. URL

http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf.

[7] Lawrence Livermore National Laboratory. ROSE Compilefras-
tructure. URLhttp://rosecompiler.org/.

[8] C. Liao, Y. Yan, B. R. de Supinski, D. J. Quinlan, and B. hean.
Early experiences with the openmp accelerator modelOpenMP
in the Era of Low Power Devices and Acceleratopages 84-98.
Springer, 2013.

[9] A. Marongiu, P. Burgio, and L. Benini. Fast and lightwieigsupport
for nested parallelism on cluster-based embedded mamg.cotn
Design, Automation Test in Europe Conference ExhibitioATB),
2012 pages 105 -110, 2012.

[10] A. Marongiu, A. Capotondi, G. Tagliavini, and L. Benir8implifying
many-core-based heterogeneous soc programming with efflioec-
tives. Industrial Informatics, IEEE Transactions pt1(4):957-967,
Aug 2015. ISSN 1551-3203. .

[11] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepl&; Hau-
gou, F. Clermidy, and D. Dutoit. Platform 2012, a many-camput-
ing accelerator for embedded SoCs: performance evaluefigisual
analytics applications. 149th ACM/EDAC/IEEE Design Automation
Conference (DAC)

7 2015/9/1

http://adapteva.com/docs/e16g301_datasheet.pdf
http://dx.doi.org/10.1109/LLVM-HPC.2014.10
http://www.kalrayinc.com/kalray/products/#processors
http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
http://rosecompiler.org/
http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.embedded.com/design/prototyping-and-development/4230994/A-rocket-in-your-pocket
http://www.ti.com/lit/ds/symlink/66ak2h12.pdf

	Introduction
	Architectural Template
	Background
	Benchmarks and Acceleration Schemes
	Experiments
	Effectiveness of the teams distribute construct
	Comparison with flat parallel for construct
	Comparison with nested parallel for construct

	Related Work
	Conclusion

